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Abstract

A numerical scheme based on the method of fundamental solutions (MFS) is proposed for the solution of 2D and

3D Stokes equations. The fundamental solutions of the Stokes equations, Stokeslets, are adopted as the sources to

obtain flow field solutions. The present method is validated through other numerical schemes for lid-driven flows in

a square cavity and a cubic cavity. Test results obtained for a rectangular cavity with wave-shaped bottom indicate that

the MFS is computationally efficient than the finite element method (FEM) in dealing with irregular shaped domain.

The paper also discusses the effects of number of source points and their locations on the numerical accuracy.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The MFS free from meshes, singularities, and numerical integrations is one of the promising meshless

numerical schemes for solving partial differential equations (PDEs). The basic concept of MFS is to decom-

pose the solutions of the given PDEs by superposition of the fundamental solutions with proper intensities,

which are not known a priori. These intensities are determined by collocating the known field points on the

boundary. Some excellent reviews on the MFS highlighting its advantages over the domain discretization
numerical schemes are available in [1,2]. The MFS first proposed by Kupradze and Aleksidze [3] has been

widely used in the numerical solutions for the Laplace, Poisson, biharmonic, Helmholtz and diffusion equa-

tions. As far as its applications to flow problems are concerned, only Stokes equations have been attempted.
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For 2D flows, one approach is to transform the Stokes equations into the biharmonic equations using the

stream function formulation [4]. Another approach is to recast the Stokes equations in velocity–vorticity

form, thus resulting in the Laplace equation and Poisson equation [5]. Both are then finally solved by

the MFS. Those two approaches will have no immediate solutions of the pressure.

The Stokeslets have already been employed in the boundary element method (BEM) for the solution of
Stokes flows [6]. In the present work, the MFS based on the Stokeslets is developed to directly solve the

Stokes equations for all the field variables. The Stokeslets represent the flow fields due to concentrated

point forces. Hence, when the Stokeslets are used as field intensities called source points in the MFS, the

physics underlying the Stokes problems can be easily satisfied. Numerical works on 2D Stokes flows carried

out by Alves and Silvestre [7], Young et al. [8] and Chen et al. [9] focused only on regular geometries. The

present work extends the application of the MFS to 2D irregular geometry and 3D application. The accu-

racy and efficiency of the present numerical scheme are demonstrated by means of validation results for a

square cavity and a cubic cavity and a test problem for a rectangular cavity with wave-shaped bottom.
Since the location of the source points is an important issue on the convergence in the MFS solution

procedures, an analysis is performed to study the effects of the number of source points and their locations

on the numerical accuracy.
2. Governing equations and Stokeslets

The Stokes equations for an incompressible flow can be represented by the continuity and momentum
equations as:
r �~u ¼ 0; ð1Þ
� rp þ lr2~u ¼ 0; ð2Þ
where ~u ¼ ðu; v;wÞ is the velocity vector, p is the pressure and l is the dynamic viscosity. The vorticity is

another important physical variable and is expressed as ~x ¼ r�~u, where ~x ¼ ðxx;xy ;xzÞ is the vorticity
vector. For two-dimensional flow, the stream function w is defined by u ¼ ow

oy and v ¼ � ow
ox.

The fundamental solutions for the Stokes operators are called the Stokeslets, which represent the

flow fields due to concentrated point forces. The Stokeslets for two-dimensional flow can be obtained

as [6]:
u� ¼ 1
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where r ¼ j~x�~x0j is the distance between a field point~x and a source point~x0. Similarly, the Stokeslets for

three-dimensional flow can be obtained as [6]:
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The applied point forces~a ¼ ðax; ay ; azÞ take their magnitudes after satisfying the boundary conditions at

the selected number of collocation points. This is part of the numerical procedure in the MFS and will be

discussed in the following section.
3. MFS formulations

According to the principles of the MFS the velocity field can be obtained using the corresponding

Stokeslets in Eqs. (3a) and (3b):
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where N is the number of source points and axj and ayj are the undetermined coefficients that represent the

strengths of singularities in the x- and y-directions, respectively; ~xi ¼ ðxi; yiÞ is the position of the field

point;~sj ¼ ðnj; gjÞ is the location of the source point and r ¼ j~xi �~sjj is the distance between a field point

and a source point. The boundary conditions of the velocity components will be collocated for certain

field points on the boundary in order to determine the unknown coefficients ðaxj ; a
y
jÞ. In this work, for

simplicity we typically select the source points close to the boundary as illustrated in Fig. 1, and assume
that the number of source points is equal to the number of boundary field points so that the method of

collocation can be used. Once the coefficients are computed, all the field variables can be obtained

directly by taking summation over the source points outside the computational domain from

Eqs. (5a), (5b), (6a) and (6b):
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Schematic diagram of the distribution of source and boundary field points.~s ¼~xb þ bð~xb �~xcÞ. (~s: location of source point,~xb:
n of boundary field point,~xc: center).
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By adopting a similar procedure we can obtain the flow field variables for the 3D Stokes equations.

The proper location of the source points is an important issue in the MFS with respect to the accuracy of

the numerical solution. In this paper, the position of the source points in computational domain is com-

puted by the following equation:
~s ¼~xb þ bð~xb �~xcÞ; ð7Þ

where~s ¼ ðn; g; fÞ is the spatial coordinates of the source point,~xb ¼ ðxb; yb; zbÞ is the spatial coordinates of
the boundary field point, ~xc ¼ ðxc; yc; zcÞ is the spatial coordinates of the center of the computational do-

main and b is a spatial parameter. Once the parameter b is chosen, the distribution of the source points

is determined.
4. Results and discussions

The proposed numerical scheme is validated by solving 2D and 3D Stokes equations in a lid-driven
square cavity, a rectangular cavity with wave-shaped bottom and a cubic cavity.

4.1. Square cavity

Stokes flow in a square cavity with the top lid moving with a unit velocity in the horizontal x-direc-

tion is considered as the first validation problem. The predicted results for u–y and x–v plots are com-

pared with the solutions of non-singular boundary integral equation method (NSBIEM) [10] and

multiquadrics method (MQ) [11] as shown, respectively, in Fig. 2(a) and (b). To study the effect of
number of boundary field points on the numerical accuracy, the MFS results obtained with 44, 72

and 80 boundary field points are depicted in Fig. 2(a). As the number of boundary field points

increases from 44 to 80, the present predictions approach and coincide with the results of NSBIEM

[10] and MQ [11]. The effect of the position of source locations, obtained using Eq. (7), on the
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numerical accuracy of the MFS is also investigated and the results are compared for the x–v plot as

shown in Fig. 2(b). It is observed that accurate numerical results could be obtained for a given interior

field point, when the source points are located off the boundary at about 90% of the distance from the

center. With regard to the ill-conditioning of the matrix equations generally observed in the MFS, our

numerical experiments indicate that the resulting simultaneous equations are not ill-conditioned, when
the value of the spatial parameter b is considered in the range from 0.1 to 1.1. Beyond this range the

equations are found to be ill-conditioned.

4.2. Rectangular cavity with wave-shaped bottom

The capability of the proposed numerical scheme to handle irregular computational domains is

demonstrated by solving a lid-driven rectangular cavity with wave-shaped bottom. Since analytic solu-

tions for such a complex geometry are not available, initially the problem was solved using the FEM
with 6000 bilinear elements and 6161 grid points. Fig. 3 shows the comparison of results for u–y plot

obtained by the FEM and MFS using 280, 420 and 560 boundary field points. The results predicted

by the MFS are in close agreement with the FEM solutions. It is observed that when the spatial

parameter b in Eq. (7) is assumed as 0.1, the numerical accuracy of the MFS results is insensitive

to the number of boundary field points considered in the above range, and further the matrix equa-

tions are not ill-conditioned. It should be noted that for simulating the flow field in this irregular

shape domain, the MFS requires only 560 boundary nodes as compared to 6161 grid points by the

FEM. This demonstrates that the MFS is found to be computationally efficient to handle the irregular
shaped domains. Figs. 4(a)–(d) depict the distributions of velocity vector, vorticity, pressure and

streamlines, respectively. The vorticity is computed from the velocity field using the vorticity definition.

The numerical results indicate that the flow symmetry pattern still remains as expected for the Stokes

flow. However, the flow pattern gets modified in accordance with the irregular boundary of the

domain.
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Fig. 3. Comparison of u velocity profile along y at x = 2.5 for a rectangular cavity with wave-shaped bottom.
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4.3. Cubic cavity

For the 3D application, a cubic cavity with the top lid moving with a unit velocity in the horizontal direc-

tion is considered on the Cartesian coordinate system with the x–y coordinates representing the horizontal

plane and the z-coordinate directing in the vertical direction. Figs. 5(a) and (b) show the comparisons of u–z

and x–w plots between the MFS solutions obtained using 150, 294 boundary field points and the results

obtained by a meshless BEM [5] and the MQ method [11]. The solutions of the MFS with 294 boundary

field points are in close agreement with the results of the meshless BEM [5] and MQ [11]. Figs. 6(a)–(c)
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illustrate the distributions of velocity vector, y-direction vorticity and pressure on x–z plane at y = 0.5,
respectively. These figures also highlight the flow symmetry expected in the Stokes flow. In the present case

the spatial parameter b in Eq. (7) is assumed to be 0.9 and the resulting matrix equations are free from the

ill-conditioning effect.
5. Conclusions

The MFS has been successfully used to solve 2D and 3D Stokes equations with Stokeslets as source
points. Validation results for a square cavity indicate that flow solutions close to the NSBIEM and MQ

calculations could be achieved, when 80 source points are located off the boundary at about 90% of the

distance from the center. For the case of a rectangular cavity with wave-shaped bottom, the proposed

scheme requires only 560 boundary field points to produce flow solutions close to the FEM results obtained

using 6161 grid points. For the cubic cavity, results obtained using 294 boundary nodes also show close

agreement with the solutions of the meshless BEM and MQ. Thus, the MFS based on the Stokeslets is

found to be a simple and computationally efficient numerical tool to solve Stokes equations in regular

2D and 3D domains and 2D irregular domain.
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